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Combination of CDF and DØ Limits on a Gauge Mediated SUSY Model Using
Diphoton and Missing Transverse Energy Channel

V. Buescher, R. Culbertson, J. Conway, Y. Gershtein, J-F. Grivaz, B. Heinemann, D.H. Kim,

M.S. Kim, S. Lammel, G. Landsberg, S.W. Lee, S. Mrenna, D. Toback, and S.M. Wang

for the CDF and DØ Collaborations

We combine the results of the CDF and DØ searches for chargino and neutralino production in
Gauge-Mediated SUSY using the two-photon and missing ET channel. The data are pp̄ collisions
produced at the Tevatron with

√
s = 1.96 TeV, with 202 pb−1 collected at CDF and 263 pb−1

collected at DØ . The combined limit excludes a chargino mass less than 209 GeV/c2. This result
significantly extends the individual experimental limits.

I. INTRODUCTION

Both CDF[1] and DØ [2] have reported on the search for an excess of events containing two high-pT photons
and significant missing transverse energy. The results have been interpreted in the framework of a model of Gauge-
Mediated Supersymmetry-Breaking (GMSB) with a neutralino as the next-to-lightest supersymmetric particle.

The details of the model were chosen at the Snowmass Workshop[3]. The complexity of a GMSB model is reduced
to a one–parameter model, or model–line, that is qualitatively representative of the phenomenology. The model–line
is defined as a function of a single mass parameter, Λ, which is varied to scan the masses of the particles in the model.
At the Tevatron, this model allows for a significant production of the lightest chargino and second-lightest neutralino.
These particles undergo a cascade decay to the lightest neutralino, which itself decays to a photon and a gravitino.
The searches require two identified photons and large missing ET .

Since the two experiments investigated the same model–line, the mechanics of the combination are straightforward.
The details are explained in Section IV. As the cross sections and detection efficiencies vary along the model–line,
the particle mass limits are set at the highest mass where the model can be excluded. We will report the limits
on chargino mass and Λ. For clarity, we will discuss the details of the results for a chargino mass of approximately
200 GeV/c2, which is near the combined limit, and summarize information for other mass points. The experiments
chose different arbitrary mass points to measure efficiencies, so the CDF measurements have been interpolated to the
DØ masses. In the following sections, we report the information that enters the combination: efficiency, luminosity,
background expectations and data observations.

II. EFFICIENCY AND LUMINOSITY

A. CDF

The CDF analysis requires that each event has a reconstructed interaction vertex, the absolute value of the vertex
z is less than 60 cm and the event passes the one of the diphoton triggers. Both photons must be reconstructed in the
central detector (|η| < 1) with ET > 13 GeV and pass fiducial cuts. For isolation CDF requires ET in a η − φ cone
of 0.4 to be less than 0.1ET if ET < 20 GeV, and 2 + 0.02ET if ET > 20 GeV. Photon identification also includes
requirements on tracking isolation, the ratio of hadronic to electromagnetic energy, and shower shape. The topological
cuts require that the E/T does not point along or opposite to a jet and that there is no evidence of a cosmic ray or
beam–related accidental energy deposition. The E/T cut is 45 GeV. The total acceptance times efficiency for signal
events with a chargino mass of 200 GeV/c2 is 7.3%.

The systematic uncertainty on the efficiency of the photon identification cuts is 13%, determined from the variation
of the result using different techniques. Varying the parton distribution functions (PDF) causes a 5% change in the
efficiency. Varying the initial– and final–state radiation implies a 10% systematic uncertainty and varying the hard
scale Q2 gives a 3% systematic uncertainty on the acceptance times efficiency.

The analysis includes 202 ± 12 pb−1, where the uncertainty is systematic, coming from the inelastic cross section
and the total detector acceptance for inelastic events.
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B. DØ

The DØ analysis requires that both photons are reconstructed in the central calorimeter (|η| < 1.1) and have
ET > 20 GeV. The events are triggered by a combination of single–cluster and two–cluster electromagnetic triggers.
The events are required to have a reconstructed vertex and not to exhibit patterns of correlated calorimeter noise.
Photon clusters are selected from all calorimeter clusters by requiring that: (i) at least 90% of the energy is deposited
in the EM section of the calorimeter, (ii) the calorimeter isolation variable I = [Etot(0.4) − EEM (0.2)]/EEM (0.2) is
less than 0.15, where Etot(0.4) is the total energy in a cone of radius 0.4 in η − φ space and EEM (0.2) is the EM
energy in a cone of radius 0.2, (iii) the transverse and longitudinal shower profiles are consistent with those expected
for an EM shower, and (iv) the scalar sum of the PT of all tracks in annulus of 0.05 < R < 0.4 around the cluster is
less than 2 GeV/c. Finally, to reject electrons, photon candidates are required to have no central track well-matched
to the cluster.

The efficiency for photon reconstruction and identification was obtained by reconstructing Monte Carlo events
passed through a detailed GEANT simulation of the DØ detector. The simulation was verified by comparing to
Z → e+e− data. Special attention has been paid to efficiency dependence on the number of jets in the event and on
the distance between the electron and the closest jet. The estimated systematic uncertainty on total efficiency from
photon acceptance and identification cuts is 8%.

The E/T in the event is required to be larger than 40 GeV. The event must also pass topological cuts on the direction
of E/T , namely that it is not opposite to the leading jet (if present) or along any of the photons.

The total efficiency for a chargino mass of 196 GeV/c2 is 14.9%. In addition to the acceptance and photon
identification uncertainty, there is an additional systematic uncertainty coming from the choice of PDF (5%) and
Monte Carlo statistics (4%).

The DØ analysis includes 263±17 pb−1, where the uncertainty is systematic, coming from the inelastic cross section
and the detector acceptance for inelastic events.

C. Correlations

The systematic uncertainties on the efficiencies of photon identification variables are assumed to be uncorrelated
since the two analyses are based on different detectors, cuts and methods. Since the 5% PDF systematic originates
from the same source for both experiments, and reflects effects such as changing particle PT , which would affect
both experiments similarly, the 5% PDF systematics are assumed 100% correlated. Since both experiments base
their luminosity estimates on the same inelastic cross section measurement, and both base their acceptance on the
same Monte Carlo generator, the luminosity systematics are assumed to be 100% correlated. The uncorrelated CDF
uncertainty on acceptance times efficiency is 17%. The corresponding uncorrelated DØ uncertainty is 9%.

III. BACKGROUND AND DATA OBSERVATIONS

A. CDF

CDF considers the following sources of backgrounds. The background from photons and jets faking photons with
fake E/T is estimated to be 0.01 ± 0.01(stat) ± 0.01(syst) events and is small enough to ignore in the combination.
The background from events with a true electron and a real or fake photon, where the electron then fakes a photon is
0.14± 0.06(stat)± 0.05(syst) events. The systematic uncertainty is from the uncertainty in the purity of the electron
in the eγ sample. The background from non–collision sources is 0.12 ± 0.03(stat) ± 0.09(syst) events. The total
background is 0.27 ± 0.07(stat) ± 0.10(syst) events. The total statistical and systematic uncertainty is then 12%.

CDF observed no events passing all cuts.

B. DØ

DØ considers two types of backgrounds. Background from QCD events with either real or fake photons and mis-
measured E/T is estimated to be 2.8 ± 0.5 events, with uncertainty dominated by statistics in the sample used for
the estimate. The background from events with an electron mis-identified as a photon is 0.9 ± 0.2 events, with an
uncertainty dominated by statistics. The total background is 3.7 ± 0.6 events.

DØ observed 2 events passing all cuts.
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C. Correlations

Since only DØ has a significant QCD background, its uncertainty is uncorrelated with CDF. The systematic
uncertainty on the eγ background is considered to be uncorrelated since DØ is dominated by statistics. The background
from non–collision sources is negligible in DØ and the corresponding uncertainty is therefore not correlated.

IV. COMBINATION

The combination proceeds using the data in Table I and the prescription from [4]. The method forms a Bayesian
likelihood from the product of likelihoods of the individual experiments, with flat priors. Each correlated and un-
correlated systematic uncertainty is represented by an appropriate Gaussian function. Finally we integrate over all
parameters except the cross section, and integrate the cross section to the 95% confidence level point.

The table also includes the expected limit for the experiments and the combination. The expected limit is found
by computing the limit for each possible outcome, given the expected background, and taking the average, weighted
by the probability of that outcome.

CDF

χ±

1
Mass (GeV/c2) 154 168 182 196 209

ǫ (%) 6.4 6.8 7.2 7.4 7.6
σ(ǫ)/ǫ (%) uncorrelated 17

σ(ǫ)/ǫ (%) correlated, from PDF 5
L (pb) 202

σ(L)/L (%) correlated 6
b (events) 0.27

σ(b) (events) uncorrelated 0.12
observed events 0

CDF cross section×BR2 limit (pb) 0.254 0.239 0.225 0.219‘ 0.213
CDF cross section×BR2 expected limit (pb) 0.294 0.277 0.261 0.254 0.247

DØ

χ±

1
Mass (GeV/c2) 154 168 182 196 209

ǫ (%) 11.1 12.4 13.7 14.9 15.4
σ(ǫ)/ǫ (%) uncorrelated 9

σ(ǫ)/ǫ (%) correlated PDF 5
L (pb) 263

σ(L)/L (%) correlated 6.5
b (events) 3.7

σ(b) (events) uncorrelated 0.6
observed events 2

DØ cross section×BR2 limit (pb) 0.153 0.137 0.124 0.114 0.110
DØ cross section×BR2 expected limit (pb) 0.214 0.192 0.174 0.160 0.154

Combined CDF and DØ

χ±

1
Mass (GeV/c2) 154 168 182 196 209

cross section×BR2 limit (pb) 0.099 0.090 0.083 0.077 0.075
cross section×BR2 expected limit (pb) 0.141 0.129 0.118 0.111 0.108

LO model cross section× BR2 (pb) 0.317 0.202 0.143 0.094 0.068
NLO model cross section× BR2 (pb) 0.349 0.224 0.159 0.106 0.077

TABLE I: The numbers used in the combined limits. The branching ratio for the lightest neutralino to decay to a photon
and gravitino is 0.95. The symbols ǫ, L, b, and σ(x) represent acceptence times efficiency, integrated luminosity, predicted
background event counts, and the uncertainty on x, respectively.

V. LIMIT

The combined analyses set a limit on the a total production cross section for supersymmetric particles with the
decay of the lightest neutralino into a photon and a gravitino. The cross section limit is interpreted as a chargino
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mass for a point along the model–line described above.
The branching ratio for the lightest neutralino to decay to a photon and gravitino is computed by ISAJET V7.51[5]

and is included in the limit setting process. This has a value of approximately 0.95 at a chargino mass of 200 GeV/c2.
The LO and NLO production cross sections were computed with Prospino 2.0[6] using the same GMSB parameters.
The cross sections and the cross section limits as a function of chargino mass are displayed in Fig. 1. The final mass
limit for the lightest chargino is 209 GeV/c2 which translates to a mass limit of 114 GeV/c2 on the lightest neutralino
and a limit of 84.6 TeV on Λ. This result improves significantly on the mass limits of the individual experiments,
which exclude charginos with a mass below 195 GeV/c2 (DØ ) and 167 GeV/c2 (CDF), both derived using slightly
different predictions for cross section times branching ratio.
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FIG. 1: The next-to-leading-order cross section and combined experimental limits as a function of chargino and neutralino
mass.
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